Gas Chromatography-Mass Spectrometry of N-Trifluoroacetyl Trimethylsilyl Esters of Some Iminodicarboxylic Acids

Katsuhiro Kawashiro,* Shiro Morimoto, and Hideyuki Yoshida Department of Chemical Engineering, Faculty of Engineering, Tokushima University, Minamijosanjima, Tokushima 770 (Received April 15, 1985)

The simultaneous N-trifluoroacetylation Synonsis. and O-trimethylsilylation of some iminodicarboxylic acids were studied by the use of a mixture of $\alpha,\alpha,\alpha,\alpha',\alpha',\alpha'$ hexafluoro-N-methyldiacetamide and N,O-bis(trimethylsilyl)trifluoroacetamide, as a derivatizing reagent. The resulting N-trifluoroacetyl trimethylsilyl ester derivatives gave rather complicated mass spectra with molecular (M+) and M-15 (loss of CH₃) ions upon electron impact at 20 eV.

Previously we reported EI mass spectra of Ntrifluoroacetyl (TFA) butyl ester¹⁾ and N-trimethylsilyl (TMS) TMS ester2) derivatives of some iminodicarboxylic acids (IDCAs). It has been shown that the TMS derivatives had advantages over the N-TFA butyl ester derivatives in terms of the simplicity of preparation and the easily recognizable mass spectra containing both molecular (M+) and M-15 (loss of The major drawback of the TMS CH₃) ions. derivatives is incomplete trimethylsilylation (formation of both di- and tri-TMS) due to the steric hindrance of N-substituent groups. This may be

overcome by introducing a TFA group to the imino nitrogen instead of the TMS group, which is less bulky and also a good N-masking group for amino acid esters for gas chromatography. Although two groups³⁻⁶⁾ have reported the preparation of N-TFA TMS derivatives of some common amino acids, a convenient single-step derivatization has not been established yet.

We were interested in fast and convenient preparation of N-TFA di-TMS esters of some IDCAs on a small scale for gas chromatography-mass spectrometry (GC-MS). This paper deals with a single-step preparation of such volatile derivatives, and also with their mass spectra upon electron impact at 20 eV. The IDCAs include iminodiacetic acid (1), 2- and 3-(carboxymethylamino)propionic acids (2 and 3), and 2,2'-, 2,3'-, and 3,3'-iminodipropionic acids (**4—6**).

Results and Discussion

When a suspension of 3 (50 µmol) in a mixture of

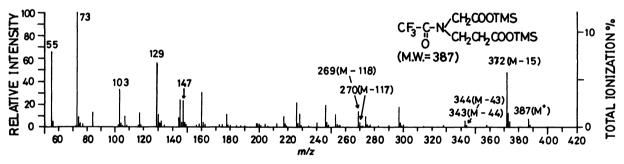


Fig. 1. Mass spectrum of N-TFA di-TMS ester of 3.

TABLE 1. SOME SELECTED IONS OF N-TFA DI-TMS ESTERS OF 1-6

Parent IDCA	m/z^{a}										
	M+ 373 (3)	M-15 358 (24)	M-43 330 (1)	M-44 329 (4)	M-117 256 (1)	M-118 255 (3)	M-131 -	M-189 -	M-207 	Others	
										147 (44)	73 (100)
2	387 (1)	372 (24)	344 (2)	343 (8)	270 (22)		_	198 (6)	180 (34)	147 (33)	73 (100)
3	387 (7)	372 (48)	344 (2)	343 (5)	270 (4)	269 (14)	256 (2)	198 (3)	180 (2)	73 (100)	55 (65
4 b)	401 (1)	386 (37)	358 (2)	357 (4)	284 (27)	283 (1)	_	212 (99)	194 (50)	166 (52)	73 (100
5	401 (1)	386 (22)		357 (1)	284 (32)	283 (1)		212 (14)	194 (100)	73 (53)	55 (69
6	401 (3)	386 (30)	358 (1)	_	284 (8)	283 (33)	270 (2)	212 (4)	19 4 (13)	129 (86)	55 (100

a) Values in parentheses indicate relative intensity. b) A first GC peak.

equal volumes (0.20 ml) of $\alpha,\alpha,\alpha,\alpha',\alpha',\alpha'$ -hexafluoro-N-methyldiacetamide (N-methyl-bis(trifluoroacetamide), MBTFA)7), N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), and acetonitrile was heated at 100 °C for 30 min, a clear solution was obtained. analysis showed a single peak, which was determined to be N-TFA di-TMS ester of 3 by GC-MS (Fig. 1). Similarly, the other IDCAs except for 4, gave the corresponding N-TFA di-TMS esters on the singlestep derivatization (at 100 °C for 30 min). typical example, the time course of derivatization of 1 at 100 °C was studied by GC. The peak area ratio of N-TFA di-TMS ester of 1 to an internal standard (phenanthrene) became constant after reaction time of 20 min. Although small amounts of both di- and tri-TMS derivatives were present at an early stage of the derivatization (10 min), these two disappeared completely after reaction time of 20 min. findings indicate that 1 can be converted in a high yield into the N-TFA di-TMS ester under the conditions (at 100 °C for 30 min).

In the instance of 4, however, the derivatization became complicated and gave a mixture of the corresponding *N*-TFA di-TMS ester, TMS derivatives (both di- and tri-), and an unknown by-product⁸⁾ under the conditions (at 100 °C for 30 min).

The N-TFA di-TMS esters exhibited sharp and symmetrical GC peaks on a packed column. There were no indications of their adsorption on solid supports because of the presence of the stable N-TFA group. Retention times of the N-TFA di-TMS esters are generally intermediate between those of the corresponding di- and tri-TMS derivatives.²⁾

Figure 1 presents the mass spectrum of N-TFA di-TMS ester of 3, as a typical example. Some selected ions for 1—6 are listed in Table 1. Both M+ and M-15 ions characteristic of TMS derivatives are seen for 1—6. These spectra were more complex than those of the corresponding di- and tri-TMS derivatives.²⁰

 α, α' -IDCAs (1, 2, and 4) are generally characterized by M-43 (CH₃+CO), M-44 (CO₂), M-117 (COOTMS), M-189 (COOTMS+CH₂=Si(CH₃)₂), and M-207 (COOTMS+CH₂=Si(CH₃)₂+H₂O). The M-189 and M-207 were absent for 1. The N-TFA group may play an important role for the formation of the M-44 because this ion was not observed for the corresponding TMS derivatives.2) The M-44 ion⁹⁾ can be explained by migration of a TMS group to the carbonyl oxygen of the N-TFA group and subsequent elimination of a neutral species CO₂ from the rearranged M+ ion. Analogous fragmentations are known for N-acylglycine TMS esters. $^{10)}$ The amine fragment, M-117, which constituted a base peak for the corresponding TMS derivatives (both di- and tri-)2) becomes less abundant.

On the other hand, β , β' -IDCA (6) is characterized by a complex spectrum with M-43, M-117, M-118 (COOTMS+H), M-131 (CH₂COOTMS), and M-207. In addition, M-69 (CF₃) and M-97 (CF₃CO)

were observed for **6**. The M-44 characteristic of α,α' -IDCAs is not seen in this instance. The structurally most important amine fragment, M-131, which constituted a base peak for the corresponding tri-TMS derivative, ²⁰ becomes far less abundant.

Compound 3 exhibits a complicated spectrum in which both ions characteristic of α,α' - and β,β' -IDCAs are present (Fig. 1). In contrast to 3, 5 exhibited a similar spectrum to the corresponding α,α' -IDCA, 4. These facts indicate that either of the fragmentation characteristics of α,α' - or β,β' -IDCAs can take place predominantly depending on the structures of α,β' -IDCAs.

Experimental

Materials. MBTFA was obtained from Gasukuro Kogyo Co. Ltd. BSTFA, acetonitrile, and the IDCAs were the same as previously reported.²⁰

Derivatization. About 50 µmol of each IDCA was weighed into a 1 ml mini screw vial (Maruemu MV-1). Acetonitrile (0.20 ml), MBTFA (0.20 ml), and BSTFA (0.20 ml) were added to the vial. It was closed tight with a silicone cap and then heated at 100 °C for different durations in a constant-temperature air bath (Yamato Drying-Oven, DX-58).

GC. GC was carried out with a Hitachi 163 gas chromatograph equipped with a flame ionization detector and a glass column (3 mmφ×1 m) packed with 1.5% OV-101 on Chromosorb G HP (100/120 mesh) (Shimadzu). The temperature was programmed linearly from 100 °C (5 min hold) to 230 °C at a rate of 5 °C min⁻¹. Nitrogen was the carrier gas flowing at 30 ml min⁻¹. Retention times of the N-TFA di-TMS esters: 1 11.5 min, 2 12.3 min, 3 14.0 min, 4 11.8 and 12.8 min, 5 14.8 min, 6 17.4 min. Retention time of phenanthrene: 17.0 min.

GC-MS. GC-MS was carried out with a JEOL JMS-D 300 mass spectrometer connected with a JGC-20 KP gas chromatograph, and mass spectra upon electron impact at 20 eV were obtained. The GC-MS conditions were the same as previously reported.¹⁾

References

- 1) K. Kawashiro, S. Morimoto, and H. Yoshida, *Bull. Chem. Soc. Jpn.*, **57**, 1097 (1984).
- 2) K. Kawashiro, S. Morimoto, and H. Yoshida, *Bull. Chem. Soc. Jpn.*, **57**, 2871 (1984).
- 3) H. R. Kricheldorf and M. Fehrle, Synthesis, 6, 420 (1974).
- 4) M. Schwarz and G. Michael, *J. Chromatogr.*, **118**, 101 (1976).
 - 5) G. Michael, J. Chromatogr., 188, 251 (1980).
 - 6) G. Michael, J. Chromatogr., 196, 160 (1980).
 - 7) M. Donike, J. Chromatogr., 78, 273 (1973).
- 8) Although low-resolution mass spectrum of the by-product $(M^+, m/z 496)$ was obtained, its structure could not be determined in the present study.
- 9) The identity of the M-44 (CO₂) was confirmed for **3** by a high-resolution mass measurement. Found: m/z 343.1235. Calcd for $C_{12}H_{24}NO_3F_3Si_2$: M-CO₂, 343.1248.
- 10) P. V. Fennessey and S. S. Tjoa, *Org. Mass Spectrom.*, **15**, 202 (1980).